基础
Java
Java
  • 基础知识
    • Java 语言的特点
    • Java 基础
      • 语法基础
      • 类型
      • 泛型
      • 注解
      • 异常
      • 反射机制
      • Java 容器
    • Java IO
      • 基础IO
      • NIO
    • Java 并发
      • Java 内存模型
        • 主内存与工作内存
        • 对于 volatile 型变量的特殊规则
        • long 和 double 的非原子性协定
        • 原子性、可见性与有序性
        • 先行发生(Happens-Before)原则
      • 线程
        • 状态转换
        • 线程安全性
          • 对象的共享
            • 可见性
            • 线程封闭
            • 不可变性
            • 安全发布
          • 在现有的线程安全类中添加功能
        • 线程池
          • Executor 框架
          • ExecutorService
          • Executors
          • Future
          • CompletionService
          • 设置线程池的大小
          • ThreadPoolExecutor
      • 线程安全的容器
        • 同步容器类
        • 并发容器
          • ConcurrentHashMap
          • CopyOnWriteArrayList
          • BlockingQueue
            • 串行线程封闭
            • 双端队列与工作密取
      • 任务取消
        • 自定义的取消标志
        • 线程中断
        • 通过 Future 来实现取消
      • 条件队列
        • 内置条件队列
        • 显式的 Condition 对象
      • JUC 中的 AQS
        • AbstractQueuedSynchronizer
        • ReentrantLock
        • ReentrantReadWriteLock
        • Semaphore
        • CountDownLatch
      • 原子变量
        • CAS
        • 原子变量类
        • ABA 问题
        • 非阻塞算法
          • 非阻塞的栈
          • 非阻塞的链表(X)
    • Java 虚拟机
      • JVM 的运行机制
      • 类加载器
      • 运行时数据区
        • JVM 的内存区域
        • 永久代与元空间
        • OutOfMemoryError
      • Java 中的 4 种引用类型
      • 垃圾收集(GC)
        • 如何确定垃圾
        • 垃圾回收算法
        • 垃圾收集器
          • Serial 收集器
          • ParNew 收集器
          • Parallel Scavenge 收集器
          • Serial Old 收集器
          • Parallel Old 收集器
          • CMS 收集器
          • Garbage First 收集器
  • Group 1
    • JDK 与 JRE
    • JVM默认配置
    • java与HTTPS
    • 构建高效且可伸缩的结果缓存
    • 基础补充
      • 在 Switch 中使用 String
      • 为什么 Java 语言不支持多重继承?
      • 为什么在重写 equals 方法的时候需要重写 hashCode 方法
      • 为什么 String 要设计为不可变的?
      • 移位运算符
      • SPI 机制
      • 为何 HashMap 不是线程安全的
      • Class.forName() 和ClassLoader.loadClass() 区别
      • synchronized 关键字
    • 零拷贝
    • Java中的锁优化技术
      • 自旋锁与自适应自旋
      • 锁消除
      • 锁粗化
      • 轻量级锁
      • 偏向锁
    • Arthas
    • Thread.sleep()、Object.wait()、Condition.await()、LockSupport.park()
由 GitBook 提供支持
在本页
  • 概念
  • 优势
  1. 基础知识
  2. Java 并发
  3. 线程

线程池

概念

线程池是指管理一组同构工作线程的资源池。线程池是与工作队列(Work Queue)密切相关的,其中在工作队列中保存了所有等待执行的任务。

工作者线程(Worker Thread)的任务很简单:从工作队列中获取一个任务,执行任务,然后返回线程池并等待下一个任务。

优势

“在线程池中执行任务”比“为每个任务分配一个线程”优势更多:

只有当任务都是同类型的并且相互独立时,线程池的性能才能达到最佳。

  • 如果将运行时间较长的与运行时间较短的任务混合在一起,那么除非线程池很大,否则将可能造成“拥塞”。

  • 如果提交的任务依赖于其他任务,那么除非线程池无限大,否则将可能造成死锁。

线程饥饿死锁

在线程池中,如果任务依赖于其他任务,那么可能产生死锁:

  • 在单线程的 Executor 中,如果一个任务将另一个任务提交到同一个 Executor,并且等待这个被提交任务的结果,那么通常会引发死锁。第二个任务停留在工作队列中,并等待第一个任务完成,而第一个任务又无法完成,因为它在等待第二个任务的完成。

  • 在更大的线程池中,如果所有正在执行任务的线程都由于等待其他仍处于工作队列中的任务而阻塞,那么会发生同样的问题。

这种现象被称为线程饥饿死锁(Thread Starvation Deadlock),只要线程池中的任务需要无限期地等待一些必须由池中其他任务才能提供的资源或条件,例如某个任务等待另一个任务的返回值或执行结果,那么除非线程池足够大,否则将发生线程饥饿死锁。

每当提交了一个有依赖性的 Executor 任务时,要清楚地知道可能会出现线程“饥饿”死锁,因此需要在代码或配置 Executor 的配置文件中记录线程池的大小限制或配置限制。

上一页在现有的线程安全类中添加功能下一页Executor 框架

最后更新于9个月前